TRAL

875

USDC Custom Gateway

Security Assessment (Summary Report)

August 29, 2024

Prepared for:
Offchain Labs
Offchain Labs

Prepared by: Gustavo Grieco and Jaime Iglesias



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’'s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Offchain Labs Security Assessment
PUBLIC


https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Offchain
Labs under the terms of the project statement of work and has been made public at
Offchain Labs’ request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Offchain Labs Security Assessment
PUBLIC


https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 4
Project Targets 5
Executive Summary 6
Summary of Findings 7
Detailed Findings 8

1. Lack of proper scripts to deploy a USDC token in L2 8

2. USDC token bridge contract does not handle certain corner cases 10

3. Valid USDC in-flight operations are not clearly specified 12
A. Vulnerability Categories 14
B. Code Quality Findings 16
Trail of Bits 3 Offchain Labs Security Assessment

PUBLIC



Project Summary

Contact Information
The following project manager was associated with this project:

Mary O’Brien, Project Manager
mary.obrien@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Gustavo Grieco, Consultant Jaime Iglesias, Consultant
gustavo.grieco@trailofbits.com jaime.iglesias@trailofbits.com

Project Timeline

The significant events and milestones of the project are listed below.

Date Event

July 11, 2024 Pre-project kickoff call

July 24, 2024 Delivery of report draft

July 24, 2024 Report readout meeting

August 29, 2024 Delivery of summary report

Trail of Bits 4 Offchain Labs Security Assessment

PUBLIC



Project Targets

The engagement involved a review and testing of the targets listed below.

Bridged USDC custom gateway

Repository https://github.com/OffchainLabs/token-bridge-contracts/pull/87
Version d2c09d2

Type Solidity

Platform Ethereum

Upgrade ArbOS Governance Action contract

Repository https://github.com/ArbitrumFoundation/governance/pull/297

Version 163d7fa

Type Solidity

Platform Ethereum

Trail of Bits 5 Offchain Labs Security Assessment

PUBLIC



Executive Summary

Engagement Overview

Offchain Labs engaged Trail of Bits to review the security of the USDC custom gateway. This
gateway complies with the bridged USDC standard. The contracts can be used by new Orbit
chains that want to provide a USDC bridging solution while maintaining the ability to
upgrade to native USDC at a later point. We also reviewed a small governance action to
upgrade the ArbOS version.

A team of two consultants conducted the review from July 15 to July 23, 2024, for a total of
two engineer-weeks of effort. With full access to source code and documentation, we
performed a manual code review of the code under scope.

Observations and Impact

The focus of this audit was the USDC custom gateway. We reviewed the correctness of the
gateway code deployment, the expected deposit and withdrawal workflows, and the
migration workflow toward native token for any possible pitfalls, error-prone steps, or
underspecified instructions. The USDC custom gateway uses the existing gateway contracts
to implement its functionality, overriding a number of functions. We examined the relevant
inherited code, but we have not audited all of the remaining contracts in that codebase.

During our review, we found a number of corner cases and unspecified/undocumented
situations that could potentially result in funds stuck either before or after the USDC native
migration.

Recommendations

As a general recommendation, the Offchain Labs team should review internal and external
documentation for assumptions or requirements regarding the usage of the reference
USDC implementation.

Trail of Bits 6 Offchain Labs Security Assessment
PUBLIC


https://github.com/OffchainLabs/token-bridge-contracts

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity
1 Lack of proper scripts to deploy a USDC token in Denial of Service | Low

L2
2 USDC token bridge contract does not handle Denial of Service | Low

certain corner cases

3 Valid USDC in-flight operations should be clearly Documentation Low
specified
Trail of Bits 7 Offchain Labs Security Assessment

PUBLIC



Detailed Findings

1. Lack of proper scripts to deploy a USDC token in L2
Severity: Low Difficulty: Medium
Type: Denial of Service Finding ID: TOB-USDC-BRIDGE-001

Target: scripts

Description
The deployment of the USDC token itself requires a number of conditions that are not
properly checked in the deployment scripts.

The Circle documentation states how the procedure of deployment should account for
certain function calls:

FiatToken has a number of one-time use initialization functions (listed below) that
are not permissioned, and therefore should be called during contract deployment.
Due to the proxy pattern used by FiatToken, after (or while) specifying the current
implementation that the proxy points to, these initialization functions must be
called to set the values correctly on the proxy's storage. If not, then any caller
could invoke them in the future.

It is also recommended to call these functions directly on the implementation
contract itself, separately from the proxy, to disallow any outside caller invoking
them later. At the timing of writing, these initialization functions include:

initialize
initializeV2
initializeV2_1
initializeV2_2

o

Figure 3.1: Part of the documentation on the deployment of the FiatToken contract (USDC
reference implementation)

However, it is unclear if the L2 USDC token deployment includes these recommendations.
We have access to only the Sepolia test scripts for local deployment, and these perform
only individual transactions to the proxy:

const 12UsdcFiatToken = IFiatToken__factory.connect(
12UsdcProxyAddress,
deployerL2Wallet

)

const masterMinterL2 = deployerL2Wallet

Trail of Bits 8 Offchain Labs Security Assessment
PUBLIC



await (
await 12UsdcFiatToken.initialize(

"USDC token',
'usbC.e',
"usb’,
6,
masterMinterL2.address,
ethers.Wallet.createRandom().address,
ethers.Wallet.createRandom() .address,
deployerL2Wallet.address

)

) .wait()
await (await 12UsdcFiatToken.initializeV2('USDC')).wait()
await (
await 12UsdcFiatToken.initializeV2_1(ethers.Wallet.createRandom().address)
) .wait()
await (await 12UsdcFiatToken.initializeV2_2([], 'USDC.e')).wait()

Figure 2.1: Part of the deployment local scripts
Additionally, the same calls to the implementation contract are missing.

Exploit Scenario

Alice deploys an L2 USDC token contract in her Arbitrum chain to support the custom token
bridge but forgets to call the initialization functions, allowing any other account to perform
these calls but with other parameters.

Recommendations
Short term, consider using governance actions and dedicated contracts to deploy and
properly configure the L2 USDC token contract in a single transaction.

Long term, review the Circle documentation for additional steps, assumptions, or
requirements regarding the usage of the reference USDC implementation.

Trail of Bits 9 Offchain Labs Security Assessment
PUBLIC



2. USDC token bridge contract does not handle certain corner cases
Severity: Low Difficulty: Low
Type: Denial of Service Finding ID: TOB-USDC-BRIDGE-002

Target: L1ArbitrumGateway.sol, L2USDCGateway.sol

Description
The USDC token bridge does not handle special cases, such as when the token itself is
paused or the destination address is denylisted.

The handling of USDC in new chains will be performed using a custom token bridge that
contains specific code for deposits and withdrawals. However, certain interactions are not
handled properly and can result in stuck funds during either the confirmation of deposit or
withdraws. In particular, this can happen if:

e The USDC contract is paused
e The recipient of the deposit or the destination of the withdraw is denylisted

For both cases, code that checks for these corner cases is missing. For instance, in the case
of deposits into L2, the final step involves minting USDC:

function inboundEscrowTransfer(address _12Address, address _dest, uint256
_amount)

internal

override
{

IFiatToken(_12Address).mint(_dest, _amount);
}

Figure 2.1: The inboundEscrowTransfer function from L2ArbitrumGateway

For withdrawals from L2, the final step involves transferring USDC from the bridge to the
destination:

function inboundEscrowTransfer(
address _11Token,
address _dest,
uint256 _amount
) internal virtual {
// this method is virtual since different subclasses can handle escrow
differently
IERC20(_11Token).safeTransfer(_dest, _amount);

Trail of Bits 10 Offchain Labs Security Assessment
PUBLIC



Figure 2.2: The inboundEscrowTransfer function from L1ArbitrumGateway

Both steps will be blocked in the circumstances listed above with no possibility of the users
of undoing their operations.

Exploit Scenario

Alice wants to transfer to Eve. Alice is not sure if Eve’s address is denylisted, but she expects
that if this the case, the operation will revert and she will be able to recover her funds, so
Alice proceeds with the deposit. However, Alice's funds are stuck in the bridge since the
final step of the deposit/withdrawal always reverts.

Recommendations

Short term, consider adding code to properly handle these corner cases, allowing users to
recover their funds (e.g., by undoing the deposit in case the contract is paused or the
destination is denylisted as part of the L2 deposit flow).

Long term, review the Circle documentation for additional steps, assumptions, or
requirements regarding the usage of the reference USDC implementation. Thoroughly
document this behavior so that users are aware of it.

Trail of Bits 11 Offchain Labs Security Assessment
PUBLIC



3. Valid USDC in-flight operations are not clearly specified
Severity: Low Difficulty: Medium
Type: Documentation Finding ID: TOB-USDC-BRIDGE-003

Target: Protocol level

Description
The process for migrating to a native token requires a clear specification of the in-flight
operations to avoid miscounting the total supply.

The USDC custom gateway documentation describes how to migrate from bridge USDC to
a native token. In particular, it describes how to deal with unclaimed deposits:

There should be no in-flight deposits when minter role is revoked. If there are any,
they should be executed (can be done by anyone by claiming the failed retryable
ticket which does the USDC depositing).

chain owner reads the total supply of USDC on child chains. Then, he invokes
setBurnAmount (uint256) on the parent child gateway where the amount matches the
total supply

* in case there are unclaimed deposits, their total amount should be added to the
supply as those tokens shall eventually be minted by child chain gateway

Figure 3.1: Part of the documentation on the migration process to native

However, extensive documentation on what constitutes an in-flight operation is needed to
avoid confusion when these are counted. In particular, the documentation should include a
procedure to determine if a transaction is a potential deposit/withdrawal or not. A clear
specification should essentially describe how to use events in certain contracts to detect
transactions that are valid deposits/withdrawals. This specification should be used to
match all previous deposits, even the ones that are still in the retryable ticket queue. (These
deposits can be as old as the chain, since retryable tickets can be kept alive indefinitely if
users provide values for them.)

Additionally, the documentation should also explain how to constrain the set of possible
deposits to avoid the following scenarios:

e Withdrawals/deposits cannot be finalized (e.g., the destination address is
denylisted).
e Transactions look like deposits/withdrawals, but will always revert.

Trail of Bits 12 Offchain Labs Security Assessment
PUBLIC



Exploit Scenario

Eve creates a number of retryable tickets that seem to interact with the USDC custom
bridge in L2. Alice is the chain owner and wants to start the procedure to convert the USDC
to a native token. She miscounts Eve's transactions as valid deposits and burns an incorrect
amount of tokens.

Recommendations
Short term, expand the documentation to provide a clear specification of in-flight
operations.

Long term, review the internal documentation of each component to identify any gaps or
underspecified sections.

Trail of Bits 13 Offchain Labs Security Assessment
PUBLIC



A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
PUBLIC

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

14 Offchain Labs Security Assessment



Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
PUBLIC

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

15 Offchain Labs Security Assessment



B. Code Quality Findings

These findings are not issues, but represent opportunities to enhance the security of the
codebase.

Documentation

e The USDC custom gateway can be deployed in Orbit chains where a custom token
fee is used; however, it cannot be used if the USDC itself is the fee token. Add this
behavior to the documentation to avoid confusion.

Smart Contracts

e Beware of isolated changes in code style. The new code uses custom errors while
the old gateways use require statements; this can lead to errors due to differences
in the way conditions are checked (e.g., negative vs. positive conditions).

function initialize(
address _l1Counterpart,
address _router,
address _11USDC,
address _12USDC,
address _owner
) public {
if (_11USDC == address(@)) {
revert L2USDCGateway_InvalidL1USDC();
}
if (_12USDC == address(0)) {
revert L2USDCGateway_InvalidlL2USDC();
}
if (_owner == address(0)) {
revert L2USDCGateway_InvalidOwner();

}
Figure D.1: initialize function in L2USDCGateway.sol#L58-L73

function _initialize(address _l1Counterpart, address _router) internal override {
TokenGateway._initialize(_l1Counterpart, _router);
// L1 gateway must have a router
require(_router != address(@), "BAD_ROUTER");

Figure D.2: initialize function in L2ZArbitrumGateway.sol#L72-176

Trail of Bits 16 Offchain Labs Security Assessment
PUBLIC


https://github.com/OffchainLabs/token-bridge-contracts/blob/d2c09d2083d929d86022b30d1e625e69ca75e77c/contracts/tokenbridge/arbitrum/gateway/L2USDCGateway.sol#L58-L73
https://github.com/OffchainLabs/token-bridge-contracts/blob/d2c09d2083d929d86022b30d1e625e69ca75e77c/contracts/tokenbridge/arbitrum/gateway/L2ArbitrumGateway.sol#L72-L76

